49 research outputs found

    Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients

    Get PDF
    In this work, we generalize the current theory of strong convergence rates for the backward Euler–Maruyama scheme for highly non-linear stochastic differential equations, which appear in both mathematical finance and bio-mathematics. More precisely, we show that under a dissipative condition on the drift coefficient and superlinear growth condition on the diffusion coefficient the BEM scheme converges with strong order of a half. This type of convergence gives theoretical foundations for efficient variance reduction techniques for Monte Carlo simulations. We support our theoretical results with relevant examples, such as stochastic population models and stochastic volatility models

    Comparing hitting time behaviour of Markov jump processes and their diffusion approximations

    Get PDF
    Markov jump processes can provide accurate models in many applications, notably chemical and biochemical kinetics, and population dynamics. Stochastic differential equations offer a computationally efficient way to approximate these processes. It is therefore of interest to establish results that shed light on the extent to which the jump and diffusion models agree. In this work we focus on mean hitting time behavior in a thermodynamic limit. We study three simple types of reactions where analytical results can be derived, and we find that the match between mean hitting time behavior of the two models is vastly different in each case. In particular, for a degradation reaction we find that the relative discrepancy decays extremely slowly, namely, as the inverse of the logarithm of the system size. After giving some further computational results, we conclude by pointing out that studying hitting times allows the Markov jump and stochastic differential equation regimes to be compared in a manner that avoids pitfalls that may invalidate other approaches

    Multilevel Monte Carlo methods for applications in finance

    Full text link
    Since Giles introduced the multilevel Monte Carlo path simulation method [18], there has been rapid development of the technique for a variety of applications in computational finance. This paper surveys the progress so far, highlights the key features in achieving a high rate of multilevel variance convergence, and suggests directions for future research.Comment: arXiv admin note: text overlap with arXiv:1202.6283; and with arXiv:1106.4730 by other author

    Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients

    Get PDF
    We are interested in the strong convergence and almost sure stability of Euler-Maruyama (EM) type approximations to the solutions of stochastic differential equations (SDEs) with non-linear and non-Lipschitzian coefficients. Motivation comes from finance and biology where many widely applied models do not satisfy the standard assumptions required for the strong convergence. In addition we examine the globally almost surely asymptotic stability in this non-linear setting for EM type schemes. In particular, we present a stochastic counterpart of the discrete LaSalle principle from which we deduce stability properties for numerical methods

    First order strong approximations of scalar SDEs with values in a domain

    Get PDF
    We are interested in strong approximations of one-dimensional SDEs which have non-Lipschitz coefficients and which take values in a domain. Under a set of general assumptions we derive an implicit scheme that preserves the domain of the SDEs and is strongly convergent with rate one. Moreover, we show that this general result can be applied to many SDEs we encounter in mathematical finance and bio-mathematics. We will demonstrate flexibility of our approach by analysing classical examples of SDEs with sublinear coefficients (CIR, CEV models and Wright-Fisher diffusion) and also with superlinear coefficients (3/2-volatility, Ait-Sahalia model). Our goal is to justify an efficient Multi-Level Monte Carlo (MLMC) method for a rich family of SDEs, which relies on good strong convergence properties

    Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without L\'{e}vy area simulation

    Full text link
    In this paper we introduce a new multilevel Monte Carlo (MLMC) estimator for multi-dimensional SDEs driven by Brownian motions. Giles has previously shown that if we combine a numerical approximation with strong order of convergence O(Δt)O(\Delta t) with MLMC we can reduce the computational complexity to estimate expected values of functionals of SDE solutions with a root-mean-square error of ϵ\epsilon from O(ϵ−3)O(\epsilon^{-3}) to O(ϵ−2)O(\epsilon^{-2}). However, in general, to obtain a rate of strong convergence higher than O(Δt1/2)O(\Delta t^{1/2}) requires simulation, or approximation, of L\'{e}vy areas. In this paper, through the construction of a suitable antithetic multilevel correction estimator, we are able to avoid the simulation of L\'{e}vy areas and still achieve an O(Δt2)O(\Delta t^2) multilevel correction variance for smooth payoffs, and almost an O(Δt3/2)O(\Delta t^{3/2}) variance for piecewise smooth payoffs, even though there is only O(Δt1/2)O(\Delta t^{1/2}) strong convergence. This results in an O(ϵ−2)O(\epsilon^{-2}) complexity for estimating the value of European and Asian put and call options.Comment: Published in at http://dx.doi.org/10.1214/13-AAP957 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Convergence and qualitative properties of modified explicit schemes for BSDEs with polynomial growth

    Get PDF
    The theory of Forward-Backward Stochastic Differential Equations (FBSDEs) paves a way to probabilistic numerical methods for nonlinear parabolic PDEs. The majority of the results on the numerical methods for FBSDEs relies on the global Lipschitz assumption, which is not satisfied for a number of important cases such as the Fisher--KPP or the FitzHugh--Nagumo equations. Furthermore, it has been shown in \cite{LionnetReisSzpruch2015} that for BSDEs with monotone drivers having polynomial growth in the primary variable yy, only the (sufficiently) implicit schemes converge. But these require an additional computational effort compared to explicit schemes. This article develops a general framework that allows the analysis, in a systematic fashion, of the integrability properties, convergence and qualitative properties (e.g.~comparison theorem) for whole families of modified explicit schemes. The framework yields the convergence of some modified explicit scheme with the same rate as implicit schemes and with the computational cost of the standard explicit scheme. To illustrate our theory, we present several classes of easily implementable modified explicit schemes that can computationally outperform the implicit one and preserve the qualitative properties of the solution to the BSDE. These classes fit into our developed framework and are tested in computational experiments.Comment: 49 pages, 3 figure

    A limit order book model for latency arbitrage

    Full text link
    We consider a single security market based on a limit order book and two investors, with different speeds of trade execution. If the fast investor can front-run the slower investor, we show that this allows the fast trader to obtain risk free profits, but that these profits cannot be scaled. We derive the fast trader's optimal behaviour when she has only distributional knowledge of the slow trader's actions, with few restrictions on the possible prior distributions. We also consider the slower trader's response to the presence of a fast trader in a market, and the effects of the introduction of a `Tobin tax' on financial transactions. We show that such a tax can lead to the elimination of profits from front-running strategies. Consequently, a Tobin tax can both increase market efficiency and attract traders to a market
    corecore